Search results
Results from the WOW.Com Content Network
The thermal conductivity detector (TCD), also known as a katharometer, is a bulk property detector and a chemical specific detector commonly used in gas chromatography. [1] This detector senses changes in the thermal conductivity of the column eluent and compares it to a reference flow of carrier gas. Since most compounds have a thermal ...
A hydrogen sensor is a gas detector that detects the presence of hydrogen. They contain micro-fabricated point-contact hydrogen sensors and are used to locate hydrogen leaks. They are considered low-cost, compact, durable, and easy to maintain as compared to conventional gas detecting instruments.
A thermal sensor is a device able to detect the thermal radiation emitted by an object located in the FOV(Field Of View) of the sensor. Infrared radiation ( IR ) striking the sensor produces a change in the temperature of the device that as a consequence generates an electric output signal proportional to the incident IR power.
Pirani was aware of the gas thermal conductivity investigations of Kundt and Warburg [4] (1875) published thirty years earlier and the work of Marian Smoluchowski [5] (1898). In 1906 he described his "directly indicating vacuum gauge" that used a heated wire to measure vacuum by monitoring the heat transfer from the wire by the vacuum environment.
The 3ω-method (3 omega method) or 3ω-technique, is a measurement method for determining the thermal conductivities of bulk material (i.e. solid or liquid) and thin layers. The process involves a metal heater applied to the sample that is heated periodically. The temperature oscillations thus produced are then measured.
A heat detector is a fire alarm device designed to respond when the convected thermal energy of a fire increases the temperature of a heat sensitive element. The thermal mass and conductivity of the element regulate the rate flow of heat into the element. All heat detectors have this thermal lag. Heat detectors have two main classifications of ...
The range of thermophysical properties can be covered by different forms of the technique, with the exception that the recommended thermal conductivity range where the highest precision can be attained is 0.01 to 150 W/m•K for the linear source freestanding sensor and 500 to 8000 J/m2•K•s0.5 for the planar source freestanding sensor.
Very high thermal conductivity measurements up to 22,600 w m −1 K −1 were reported by Fenton, E.W., Rogers, J.S. and Woods, S.D. in reference 570 on page 1458, 41, 2026–33, 1963. The data is listed on pages 6 through 8 and graphed on page 1 where Fenton and company are on curves 63 and 64.