Search results
Results from the WOW.Com Content Network
with T ∞ in K, F o in 10 −2 W m −2 Hz −1 (the Covington index) a value of F averaged over several solar cycles. The Covington index varies typically between 70 and 250 during a solar cycle, and never drops below about 50. Thus, T ∞ varies between about 740 and 1350 K. During very quiet magnetospheric conditions, the still continuously ...
The thermosphere is the second-highest layer of Earth's atmosphere. It extends from the mesopause (which separates it from the mesosphere) at an altitude of about 80 km (50 mi; 260,000 ft) up to the thermopause at an altitude range of 500–1000 km (310–620 mi
Average yearly temperature is 22.4 °C, ranging from an average minimum of 12.2 °C to a maximum of 29.9 °C. The average temperature range is 11.4 °C. [6] Variability throughout the year is small (standard deviation of 2.31 °C for the maximum monthly average and 4.11 °C for the minimum). The graph also shows the typical phenomenon of ...
The troposphere contains the boundary layer, and ranges in height from an average of 9 km (5.6 mi; 30,000 ft) at the poles, to 17 km (11 mi; 56,000 ft) at the Equator. [ 3 ] [ 4 ] In the absence of inversions and not considering moisture , the temperature lapse rate for this layer is 6.5 °C per kilometer, on average, according to the U.S ...
These figures should be compared with the temperature and density of Earth's atmosphere plotted at NRLMSISE-00, which shows the air density dropping from 1200 g/m 3 at sea level to 0.125 g/m 3 at 70 km, a factor of 9600, indicating an average scale height of 70 / ln(9600) = 7.64 km, consistent with the indicated average air temperature over ...
The temperature of the thermopause could range from nearly absolute zero to 987.547 °C (1,810 °F). Below this, the atmosphere is defined to be active [ clarification needed ] on the insolation received, due to the increased presence of heavier gases such as monatomic oxygen.
where R is the ideal gas constant, T is temperature, M is average molecular weight, and g 0 is the gravitational acceleration at the planet's surface. Using the values T=273 K and M=29 g/mol as characteristic of the Earth's atmosphere, H = RT/Mg = (8.315*273)/(29*9.8) = 7.99, or about 8 km, which coincidentally is approximate height of Mt. Everest.
1 (θ), mode (2, 2) becomes P 2 2 ( θ ) , with θ the co-latitude, etc. [ 9 ] Within the thermosphere , mode (1, −2) is the predominant mode reaching diurnal temperature amplitudes at the exosphere of at least 140 K and horizontal winds of the order of 100 m/s and more increasing with geomagnetic activity. [ 11 ]