enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  3. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Linear regression plays an important role in the subfield of artificial intelligence known as machine learning. The linear regression algorithm is one of the fundamental supervised machine-learning algorithms due to its relative simplicity and well-known properties. [34]

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  5. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]

  6. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Similarity learning is an area of supervised machine learning closely related to regression and classification, but the goal is to learn from examples using a similarity function that measures how similar or related two objects are.

  7. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    The estimated regression coefficients (having the same dimension as the number of selected eigenvectors) along with the corresponding selected eigenvectors are then used for predicting the outcome for a future observation. In machine learning, this technique is also known as spectral regression.

  8. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.

  9. Linear predictor function - Wikipedia

    en.wikipedia.org/wiki/Linear_predictor_function

    An example is polynomial regression, which uses a linear predictor function to fit an arbitrary degree polynomial relationship (up to a given order) between two sets of data points (i.e. a single real-valued explanatory variable and a related real-valued dependent variable), by adding multiple explanatory variables corresponding to various ...