enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...

  3. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  4. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  5. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    The set of positive integers N ∖ {0} is a commutative monoid under multiplication (identity element 1). Given a set A, the set of subsets of A is a commutative monoid under intersection (identity element is A itself). Given a set A, the set of subsets of A is a commutative monoid under union (identity element is the empty set).

  6. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  7. Associative property - Wikipedia

    en.wikipedia.org/wiki/Associative_property

    Slightly more generally, given four sets M, N, P and Q, with h : M → N, g : N → P, and f : P → Q, then = = as before. In short, composition of maps is always associative. In category theory, composition of morphisms is associative by definition. Associativity of functors and natural transformations follows from associativity of morphisms.

  8. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a, we have a + 1 = 1 + a.

  9. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    This product satisfies the following algebraic properties, which formally mean that the space of integrable functions with the product given by convolution is a commutative associative algebra without identity (Strichartz 1994, §3.3).