Search results
Results from the WOW.Com Content Network
The Bohr radius ( ) is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an atom. Its value is 5.291 772 105 44 (82) × 10 −11 m. [1] [2]
If the nucleus is assumed to be spherically symmetric, an approximate relationship between nuclear radius and mass number arises above A=40 from the formula R=R o A 1/3 with R o = 1.2 ± 0.2 fm. [6] R is the predicted spherical nuclear radius, A is the mass number, and R o is a constant determined by experimental
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0
For more recent data on covalent radii see Covalent radius. Just as atomic units are given in terms of the atomic mass unit (approximately the proton mass), the physically appropriate unit of length here is the Bohr radius, which is the radius of a hydrogen atom. The Bohr radius is consequently known as the "atomic unit of length".
The stable nucleus has approximately a constant density and therefore the nuclear radius R can be approximated by the following formula, R = r 0 A 1 / 3 {\displaystyle R=r_{0}A^{1/3}\,} where A = Atomic mass number (the number of protons Z , plus the number of neutrons N ) and r 0 = 1.25 fm = 1.25 × 10 −15 m.
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]
The power of a point arises in the special case that one of the radii is zero. If the two circles are orthogonal, the Darboux product vanishes. If the two circles intersect, then their Darboux product is where φ is the angle of intersection (see section orthogonal circle).