Search results
Results from the WOW.Com Content Network
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions. Python 2.7.18, released in 2020, was the last release of Python 2. [37] Python consistently ranks as one of the most popular programming languages, and has gained widespread use in the machine learning community. [38] [39] [40] [41]
The Lesk algorithm is based on the assumption that words in a given "neighborhood" (section of text) will tend to share a common topic. A simplified version of the Lesk algorithm is to compare the dictionary definition of an ambiguous word with the terms contained in its neighborhood. Versions have been adapted to use WordNet. [2]
Sparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims to find a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms, and they compose a dictionary.
A dictionary coder, also sometimes known as a substitution coder, is a class of lossless data compression algorithms which operate by searching for matches between the text to be compressed and a set of strings contained in a data structure (called the 'dictionary') maintained by the encoder. When the encoder finds such a match, it substitutes ...
Lexicography is the study of lexicons and the art of compiling dictionaries. [1] It is divided into two separate academic disciplines: . Practical lexicography is the art or craft of compiling, writing and editing dictionaries.
Sparse dictionary learning is a feature learning method where a training example is represented as a linear combination of basis functions and assumed to be a sparse matrix. The method is strongly NP-hard and difficult to solve approximately. [70] A popular heuristic method for sparse dictionary learning is the k-SVD algorithm. Sparse ...
This class includes Hermite–Obreschkoff methods and Fehlberg methods, as well as methods like the Parker–Sochacki method [17] or Bychkov–Scherbakov method, which compute the coefficients of the Taylor series of the solution y recursively. methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ...