Search results
Results from the WOW.Com Content Network
For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".
Fifth power (algebra) In arithmetic and algebra, the fifth power or sursolid[1] of a number n is the result of multiplying five instances of n together: n5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:
On scientific calculators, it is usually known as "SCI" display mode. In scientific notation, nonzero numbers are written in the form. or m times ten raised to the power of n, where n is an integer, and the coefficient m is a nonzero real number (usually between 1 and 10 in absolute value, and nearly always written as a terminating decimal).
The number n is called the exponent and the expression is known formally as exponentiation of b by n or the exponential of n with base b. It is more commonly expressed as "the n th power of b ", " b to the n th power" or " b to the power n ". For example, the fourth power of 10 is 10,000 because 104 = 10 × 10 × 10 × 10 = 10,000.
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
A formal power series is a special kind of formal series, of the form. where the called coefficients, are numbers or, more generally, elements of some ring, and the are formal powers of the symbol that is called an indeterminate or, commonly, a variable. Hence, power series can be viewed as a generalization of polynomials where the number of ...
Tetration is also defined recursively as. allowing for attempts to extend tetration to non-natural numbers such as real, complex, and ordinal numbers. The two inverses of tetration are called super-root and super-logarithm, analogous to the nth root and the logarithmic functions.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, it is possible to expand the polynomial (x + y) n into a sum involving terms of the form ax b y c, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending ...