Search results
Results from the WOW.Com Content Network
It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x – 1. Or x and y can both be treated as unknowns, and then there are many solutions to the equation; a symbolic solution is (x, y) = (a + 1, a), where the variable a may take any value. Instantiating a symbolic solution with specific numbers ...
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
An important application is Newton–Raphson division, which can be used to quickly find the reciprocal of a number a, using only multiplication and subtraction, that is to say the number x such that 1 / x = a. We can rephrase that as finding the zero of f(x) = 1 / x − a. We have f ′ (x) = − 1 / x 2 . Newton's ...
Vertical line of equation x = a Horizontal line of equation y = b. Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all ...
In his book Flos, Leonardo de Pisa, also known as Fibonacci (1170–1250), was able to closely approximate the positive solution to the cubic equation x 3 + 2x 2 + 10x = 20. Writing in Babylonian numerals he gave the result as 1,22,7,42,33,4,40 (equivalent to 1 + 22/60 + 7/60 2 + 42/60 3 + 33/60 4 + 4/60 5 + 40/60 6 ), which has a relative ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Thomas' algorithm is not stable in general, but is so in several special cases, such as when the matrix is diagonally dominant (either by rows or columns) or symmetric positive definite; [1] [2] for a more precise characterization of stability of Thomas' algorithm, see Higham Theorem 9.12. [3]
For example, the system x 3 – 1 = 0, x 2 – 1 = 0 is overdetermined (having two equations but only one unknown), but it is not inconsistent since it has the solution x = 1. A system is underdetermined if the number of equations is lower than the number of the variables.