Search results
Results from the WOW.Com Content Network
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The remainder, as defined above, is called the least positive remainder or simply the remainder. [2] The integer a is either a multiple of d, or lies in the interval between consecutive multiples of d, namely, q⋅d and (q + 1)d (for positive q). In some occasions, it is convenient to carry out the division so that a is as close to an integral ...
17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2. In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the ...
An example of long division performed without a calculator. A more detailed breakdown of the steps goes as follows: Find the shortest sequence of digits starting from the left end of the dividend, 500, that the divisor 4 goes into at least once. In this case, this is simply the first digit, 5.
One must multiply the leftmost digit of the original number by 3, add the next digit, take the remainder when divided by 7, and continue from the beginning: multiply by 3, add the next digit, etc. For example, the number 371: 3×3 + 7 = 16 remainder 2, and 2×3 + 1 = 7. This method can be used to find the remainder of division by 7.
The process of substituting remainders by formulae involving their predecessors can be continued until the original numbers a and b are reached: r 2 = r 0 − q 2 r 1 r 1 = b − q 1 r 0 r 0 = a − q 0 b. After all the remainders r 0, r 1, etc. have been substituted, the final equation expresses g as a linear sum of a and b, so that g = sa + tb.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.