Search results
Results from the WOW.Com Content Network
Pressure head is a component of hydraulic head, in which it is combined with elevation head. When considering dynamic (flowing) systems, there is a third term needed: velocity head. Thus, the three terms of velocity head, elevation head, and pressure head appear in the head equation derived from the Bernoulli equation for incompressible fluids:
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
The total hydraulic head of a fluid is composed of pressure head and elevation head. [1] [2] The pressure head is the equivalent gauge pressure of a column of water at the base of the piezometer, and the elevation head is the relative potential energy in terms of an elevation. The head equation, a simplified form of the Bernoulli principle for ...
Vessel dished ends are mostly used in storage or pressure vessels in industry. These ends, which in upright vessels are the bottom and the top, use less space than a hemisphere (which is the ideal form for pressure containments) while requiring only a slightly thicker wall.
Another application is a similar arrangement in some fuel tanks used in control line model airplanes, where it is called a "uniflow" tank, where the tank venting tubing goes to the end of the prismatic tank, close to the fuel pick-up tube that feeds the engine; thus, when fuel is consumed, the uniflow tank supplies approximately the same ...
Y th : theoretical specific supply; H t : theoretical head pressure; g: gravitational acceleration For the case of a Pelton turbine the static component of the head is zero, hence the equation reduces to: = ().
[1] [2] [3] A key question is the uniformity of the flow distribution and pressure drop. Fig. 1. Manifold arrangement for flow distribution. Traditionally, most of theoretical models are based on Bernoulli equation after taking the frictional losses into account using a control volume (Fig. 2).
In fluid dynamics, stagnation pressure, also referred to as total pressure, is what the pressure would be if all the kinetic energy of the fluid were to be converted into pressure in a reversable manner. [1]: § 3.2 ; it is defined as the sum of the free-stream static pressure and the free-stream dynamic pressure. [2]