Search results
Results from the WOW.Com Content Network
The protonation of isobutene in the formation of a carbocation: (CH 3) 2 C=CH 2 + HBF 4 ⇌ (CH 3) 3 C + + BF − 4; The protonation of ammonia in the formation of ammonium chloride from ammonia and hydrogen chloride: NH 3 + HCl → NH 4 Cl; Protonation is a fundamental chemical reaction and is a step in many stoichiometric and catalytic processes.
This acid-base reaction has been examined mainly for unimolecular complexes. Such reactions are molecular versions of the familiar reaction of acids with carbonate minerals. Protonation of carbonato complexes gives the corresponding bicarbonate. The structure of bicarbonate complex indicates that protonation occurs at the coordinated oxygen. [8]
In organic chemistry and organometallic chemistry, carbon–hydrogen bond activation (C−H activation) is a type of organic reaction in which a carbon–hydrogen bond is cleaved and replaced with a C−X bond (X ≠ H is typically a main group element, like carbon, oxygen, or nitrogen).
Reaction systems that are less efficient or entirely inactive in the absence of carboxylate acids and bases are likely to occur through a concerted metalation protonation reaction pathway. [15] An example of such a reaction with an sp 3 C–H bond that was reported in 2007 by Keith Fagnou and coworkers is an intramolecular cyclization that uses ...
In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds.These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. [1]
Reaction mechanism for the amine formation from a carboxylic acid via Schmidt reaction. In the reaction mechanism for the Schmidt reaction of ketones, the carbonyl group is activated by protonation for nucleophilic addition by the azide, forming azidohydrin 3, which loses water in an elimination reaction to diazoiminium 5.
Such reactions are subject to the usual parameters that affect other reactions in coordination chemistry, but steric effects are especially important in determining the stereochemistry and regiochemistry of the reactions. The reverse reaction, the de-insertion of CO and alkenes, are of fundamental significance in many catalytic cycles as well.
In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions.