Search results
Results from the WOW.Com Content Network
The problem to determine all positive integers such that the concatenation of and in base uses at most distinct characters for and fixed [citation needed] and many other problems in the coding theory are also the unsolved problems in mathematics.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Though there are many approximate solutions (such as Welch's t-test), the problem continues to attract attention [4] as one of the classic problems in statistics. Multiple comparisons: There are various ways to adjust p-values to compensate for the simultaneous or sequential testing of hypotheses. Of particular interest is how to simultaneously ...
In computer science, the dining philosophers problem is an example problem often used in concurrent algorithm design to illustrate synchronization issues and techniques for resolving them. It was originally formulated in 1965 by Edsger Dijkstra as a student exam exercise, presented in terms of computers competing for access to tape drive ...
For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v , an optimization problem might be "find a path from u to v that uses the fewest edges".
The Dutch national flag problem [1] is a computational problem proposed by Edsger Dijkstra. [2] The flag of the Netherlands consists of three colors: red, white, and blue. Given balls of these three colors arranged randomly in a line (it does not matter how many balls there are), the task is to arrange them such that all balls of the same color ...
Thus, a problem on elements is reduced to two recursive problems on / elements (to find the pivot) and at most / elements (after the pivot is used). The total size of these two recursive subproblems is at most 9 n / 10 {\displaystyle 9n/10} , allowing the total time to be analyzed as a geometric series adding to O ( n ) {\displaystyle O(n)} .