enow.com Web Search

  1. Ad

    related to: line integrals practice problems

Search results

  1. Results from the WOW.Com Content Network
  2. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    A line integral of a scalar field is thus a line integral of a vector field, where the vectors are always tangential to the line of the integration. Line integrals of vector fields are independent of the parametrization r in absolute value, but they do depend on its orientation. Specifically, a reversal in the orientation of the parametrization ...

  3. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem implies that line integrals through gradient fields are path-independent. In physics this theorem is one of the ways of defining a conservative force . By placing φ as potential, ∇ φ is a conservative field .

  4. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.

  5. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5] [6] In particular, a vector field on can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.

  6. Related rates - Wikipedia

    en.wikipedia.org/wiki/Related_rates

    The most common way to approach related rates problems is the following: [2] Identify the known variables , including rates of change and the rate of change that is to be found. (Drawing a picture or representation of the problem can help to keep everything in order)

  7. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Three distinct planes, no pair of which are parallel, can either meet in a common line, meet in a unique common point, or have no point in common. In the last case, the three lines of intersection of each pair of planes are mutually parallel. A line can lie in a given plane, intersect that plane in a unique point, or be parallel to the plane.

  8. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.

  9. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    A line integral of a vector field is said to be path-independent if it depends on only two integral path endpoints regardless of which path between them is chosen: [4] = for any pair of integral paths P 1 {\displaystyle P_{1}} and P 2 {\displaystyle P_{2}} between a given pair of path endpoints in U {\displaystyle U} .

  1. Ad

    related to: line integrals practice problems