enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Metallic bonding - Wikipedia

    en.wikipedia.org/wiki/Metallic_bonding

    Metallic bonding is mostly non-polar, because even in alloys there is little difference among the electronegativities of the atoms participating in the bonding interaction (and, in pure elemental metals, none at all). Thus, metallic bonding is an extremely delocalized communal form of covalent bonding.

  3. Van Arkel–Ketelaar triangle - Wikipedia

    en.wikipedia.org/wiki/Van_Arkel–Ketelaar_triangle

    The compounds with equal electronegativity, such as Cl 2 are placed in the covalent corner, while the ionic corner has compounds with large electronegativity difference, such as NaCl (table salt). The bottom side (from metallic to covalent) contains compounds with varying degree of directionality in the bond.

  4. Bonding in solids - Wikipedia

    en.wikipedia.org/wiki/Bonding_in_solids

    Covalent and ionic bonding form a continuum, with ionic character increasing with increasing difference in the electronegativity of the participating atoms. Covalent bonding corresponds to sharing of a pair of electrons between two atoms of essentially equal electronegativity (for example, C–C and C–H bonds in aliphatic hydrocarbons).

  5. Electronegativity - Wikipedia

    en.wikipedia.org/wiki/Electronegativity

    According to valence bond theory, of which Pauling was a notable proponent, this "additional stabilization" of the heteronuclear bond is due to the contribution of ionic canonical forms to the bonding. The difference in electronegativity between atoms A and B is given by: | | = / () + where the dissociation energies, E d, of the A–B, A–A ...

  6. Intramolecular force - Wikipedia

    en.wikipedia.org/wiki/Intramolecular_force

    Electrons in an ionic bond tend to be mostly found around one of the two constituent atoms due to the large electronegativity difference between the two atoms, generally more than 1.9, (greater difference in electronegativity results in a stronger bond); this is often described as one atom giving electrons to the other. [5]

  7. Chemical bond - Wikipedia

    en.wikipedia.org/wiki/Chemical_bond

    Ionic bonding is a type of electrostatic interaction between atoms that have a large electronegativity difference. There is no precise value that distinguishes ionic from covalent bonding, but an electronegativity difference of over 1.7 is likely to be ionic while a difference of less than 1.7 is likely to be covalent. [21]

  8. Electronegativities of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electronegativities_of_the...

    Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set. Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such.

  9. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron.The bond angles are arccos(− ⁠ 1 / 3 ⁠) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues.