Search results
Results from the WOW.Com Content Network
Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. [1] An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the ...
Covalent bonding corresponds to sharing of a pair of electrons between two atoms of essentially equal electronegativity (for example, C–C and C–H bonds in aliphatic hydrocarbons). As bonds become more polar, they become increasingly ionic in character. Metal oxides vary along the iono-covalent spectrum. [4]
The strong bonding of metals in liquid form demonstrates that the energy of a metallic bond is not highly dependent on the direction of the bond; this lack of bond directionality is a direct consequence of electron delocalization, and is best understood in contrast to the directional bonding of covalent bonds.
Electrons in an ionic bond tend to be mostly found around one of the two constituent atoms due to the large electronegativity difference between the two atoms, generally more than 1.9, (greater difference in electronegativity results in a stronger bond); this is often described as one atom giving electrons to the other. [5]
For a tetrahedral molecule such as difluoromethane with two types of atom bonded to the central atom, the C-F bond to the more electronegative substituent (F) will involve a carbon orbital with less s character than the C-H bond, so that the angle between the C-F bonds is less than the tetrahedral bond angle of 109.5°. [15] [23]
Close to zero means between -1 and +1.” [6] Pauling said in his Liversidge lecture in 1948 that he had been led to the principle by a consideration of ionic bonding. In the gas phase, molecular caesium fluoride has a polar covalent bond. The large difference in electronegativity gives a calculated covalent character of 9%.
In non-polar covalent bonds, the electronegativity difference between the bonded atoms is small, typically 0 to 0.3. Bonds within most organic compounds are described as covalent. The figure shows methane (CH 4), in which each hydrogen forms a covalent bond with the carbon. See sigma bonds and pi bonds for LCAO descriptions of such bonding. [22]
HSAB is an acronym for "hard and soft (Lewis) acids and bases".HSAB is widely used in chemistry for explaining the stability of compounds, reaction mechanisms and pathways. It assigns the terms 'hard' or 'soft', and 'acid' or 'base' to chemical species.