Search results
Results from the WOW.Com Content Network
A fusion energy gain factor, usually expressed with the symbol Q, is the ratio of fusion power produced in a nuclear fusion reactor to the power required to maintain the plasma in steady state. The condition of Q = 1, when the power being released by the fusion reactions is equal to the required heating power, is referred to as breakeven , or ...
In other words, fusion ignition is the point at which the increasing self-heating of the nuclear fusion removes the need for external heating. [1] This is quantified by the Lawson criterion. [2] Ignition can also be defined by the fusion energy gain factor. [3]
Fusion is the rate of fusion energy produced by the plasma; Number density is the density in particles per unit volume of the respective fuels (or just one fuel, in some cases) Cross section is a measure of the probability of a fusion event, which is based on the plasma temperature; Energy per reaction is the energy released in each fusion reaction
Why fusion energy is so hard to produce. But if the science is there, so is the hype. ... of about 1.5 but “the gain of a fusion power plant would need to be about 100. ...
The US National Ignition Facility, which uses laser-driven inertial confinement fusion, was designed with a goal of achieving a fusion energy gain factor (Q) of larger than one; the first large-scale laser target experiments were performed in June 2009 and ignition experiments began in early 2011.
The Fusion Energy Research section incorporated a milestone-based, ... Fusion energy gain factor: 2022: 1.54: NIF [286] Discharge time (field reversed configuration)
"The fusion energy gain factor, usually expressed with the symbol Q, is the ratio of fusion power produced in a nuclear fusion reactor to the power required to maintain the plasma in steady state. The condition of Q = 1, when the power being released by the fusion reactions is equal to the required heating power, is referred to as breakeven, or ...
In 1997, JET set the record of 16 megawatts of transient fusion power with a gain factor of Q = 0.62 and 4 megawatts steady state fusion power with Q = 0.18 for 4 seconds. [3] In 2021, JET sustained Q = 0.33 for 5 seconds and produced 59 megajoules of energy, beating the record 21.7 megajoules released in 1997 over around 4 seconds.