Search results
Results from the WOW.Com Content Network
If a plane intersects a solid (a 3-dimensional object), then the region common to the plane and the solid is called a cross-section of the solid. [1] A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid.
The plastic section modulus is used to calculate a cross-section's capacity to resist bending after yielding has occurred across the entire section. It is used for determining the plastic, or full moment, strength and is larger than the elastic section modulus, reflecting the section's strength beyond the elastic range.
as one would expect. This is equivalent to the above definition of the 2D mean diameter. However, for historical reasons, the hydraulic radius is defined as the cross-sectional area of a pipe A, divided by its wetted perimeter P, which leads to =, and the hydraulic radius is half of the 2D mean radius. [3]
Sectional density (often abbreviated SD) is the ratio of an object's mass to its cross sectional area with respect to a given axis. It conveys how well an object's mass is distributed (by its shape) to overcome resistance along that axis. Sectional density is used in gun ballistics.
A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon ...
The size of a target's image on radar is measured by the radar cross section or RCS, often represented by the symbol σ and expressed in square meters. This does not equal geometric area. A perfectly conducting sphere of projected cross sectional area 1 m 2 (i.e. a diameter of 1.13 m) will have an RCS of 1 m 2. For radar wavelengths much less ...
A better estimate is provided by the total area of the cross-sections perpendicular to the muscle fibers (green lines in figure 1). This measure is known as the physiological cross-sectional area (PCSA), and is commonly calculated and defined by the following formula, developed in 1975 by Alexander and Vernon: [4] [5] [6]
Non-circular cross-sections always have warping deformations that require numerical methods to allow for the exact calculation of the torsion constant. [ 2 ] The torsional stiffness of beams with non-circular cross sections is significantly increased if the warping of the end sections is restrained by, for example, stiff end blocks.