enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dulong–Petit law - Wikipedia

    en.wikipedia.org/wiki/Dulong–Petit_law

    Molar heat capacity of most elements at 25 °C is in the range between 2.8 R and 3.4 R: Plot as a function of atomic number with a y range from 22.5 to 30 J/mol K.. The Dulong–Petit law, a thermodynamic law proposed by French physicists Pierre Louis Dulong and Alexis Thérèse Petit, states that the classical expression for the molar specific heat capacity of certain chemical elements is ...

  3. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    Instead, the common practice is to measure the specific heat capacity at constant pressure (allowing the material to expand or contract as it wishes), determine separately the coefficient of thermal expansion and the compressibility of the material, and compute the specific heat capacity at constant volume from these data according to the laws ...

  4. Stefan number - Wikipedia

    en.wikipedia.org/wiki/Stefan_number

    The Stefan number [1] (St or Ste) is defined as the ratio of sensible heat to latent heat.It is given by the formula =, where c p is the specific heat, . c p is the specific heat of solid phase in the freezing process while c p is the specific heat of liquid phase in the melting process.

  5. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  6. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]

  7. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  8. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    T is the temperature in particular case of heat transfer otherwise it is the variable of interest; t is time; c is the specific heat; u is velocity; ε is porosity that is the ratio of liquid volume to the total volume; ρ is mass density; λ is thermal conductivity; Q(x,t) is source term representing the capacity of internal sources

  9. Richmann's law - Wikipedia

    en.wikipedia.org/wiki/Richmann's_law

    The physical background of the mixing rule is the fact that the heat energy of a substance is directly proportional to its mass and its absolute temperature. The proportionality factor is the specific heat capacity, which depends on the nature of the substance, but which was not described until some time after Richmann's discovery by Joseph Black.