Search results
Results from the WOW.Com Content Network
Cellular respiration is the process by which biological fuels are oxidized in the presence of an inorganic electron acceptor, such as oxygen, to drive the bulk production of adenosine triphosphate (ATP), which contains energy.
In physiology, respiration is the transport of oxygen from the outside environment to the cells within tissues, ...
Maintenance respiration, the amount of cellular respiration required for an organism to maintain itself in a constant state; Respiration (physiology), transporting oxygen and carbon dioxide between cells and the external environment Respiratory system, the anatomical system of an organism used for respiration
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.
It involves substrate-level phosphorylation in the absence of a respiratory electron transport chain. The equation for the reaction of glucose to form lactic acid is: C 6 H 12 O 6 + 2 ADP + 2 P i → 2 CH 3 CH(OH)COOH + 2 ATP + 2 H 2 O. Anaerobic respiration is respiration in the absence of O 2. Prokaryotes can utilize a variety of electron ...
Summary of aerobic respiration. Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine ...
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
The above general form, when considering O 2 as the oxidant, is the equation for respiration. In this context specifically, the above equation represents bacterial respiration though the reactants and products are essentially analogous to the short-hand equations used for multi-cellular respiration.