enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    Thus if n is a large even integer and m is a number between 3 and ⁠ n / 2 ⁠, then one might expect the probability of m and n − m simultaneously being prime to be ⁠ 1 / ln m ln(n − m) ⁠. If one pursues this heuristic, one might expect the total number of ways to write a large even integer n as the sum of two odd primes to be roughly

  3. Euler numbers - Wikipedia

    en.wikipedia.org/wiki/Euler_numbers

    The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. They also occur in combinatorics, specifically when counting the number of alternating permutations of a set with an even number of elements.

  4. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    With the exceptions of 1, 8 and 144 (F 1 = F 2, F 6 and F 12) every Fibonacci number has a prime factor that is not a factor of any smaller Fibonacci number (Carmichael's theorem). [57] As a result, 8 and 144 ( F 6 and F 12 ) are the only Fibonacci numbers that are the product of other Fibonacci numbers.

  5. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).

  6. Eulerian number - Wikipedia

    en.wikipedia.org/wiki/Eulerian_number

    In combinatorics, the Eulerian number (,) is the number of permutations of the numbers 1 to in which exactly elements are greater than the previous element (permutations with "ascents"). Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis .

  7. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Thus, it is often called Euler's phi function or simply the phi function. In 1879, J. J. Sylvester coined the term totient for this function, [14] [15] so it is also referred to as Euler's totient function, the Euler totient, or Euler's totient. Jordan's totient is a generalization of Euler's. The cototient of n is defined as n − φ(n).

  8. Euclid–Euler theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid–Euler_theorem

    The Euclid–Euler theorem states that an even natural number is perfect if and only if it has the form 2 p−1 M p, where M p is a Mersenne prime. [1] The perfect number 6 comes from p = 2 in this way, as 2 2−1 M 2 = 2 × 3 = 6, and the Mersenne prime 7 corresponds in the same way to the perfect number 28.

  9. Euler's factorization method - Wikipedia

    en.wikipedia.org/wiki/Euler's_factorization_method

    Euler's factorization method is a technique for factoring a number by writing it as a sum of two squares in two different ways. For example the number 1000009 {\displaystyle 1000009} can be written as 1000 2 + 3 2 {\displaystyle 1000^{2}+3^{2}} or as 972 2 + 235 2 {\displaystyle 972^{2}+235^{2}} and Euler's method gives the factorization ...