Search results
Results from the WOW.Com Content Network
Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology.
In addition to optical and electronic properties, the novel mechanical properties of many nanomaterials is the subject of nanomechanics research. When added to a bulk material, nanoparticles can strongly influence the mechanical properties of the material, such as the stiffness or elasticity.
Additionally, physical (mechanical, electrical, optical, etc.) properties change versus macroscopic systems. One example is the increase in surface area to volume ratio altering mechanical, thermal, and catalytic properties of materials. Diffusion and reactions can be different as well. Systems with fast ion transport are referred to as nanoionics.
The results also showed that the sensitivity and specification of the diagnostic nanosensor depend on the size of the nanoparticles, that decreasing the nanoparticle size increases the sensitivity. [23] Current density is influenced by distribution, size, or shape of nanoparticles. These properties can be improved by exploitation of capillary ...
Changing the geometry of the nanoparticles can be used to manipulate the optical activity and properties of the system, but so can the polarized light by lowering the symmetry of the conductive electrons inside the particles and changing the dipole moment of the cluster. These clusters can be used to manipulate light on the nano scale.
As a result, they have superior transport and optical properties. They have potential uses in diode lasers , amplifiers, and biological sensors. [ 74 ] Quantum dots may be excited within a locally enhanced electromagnetic field produced by gold nanoparticles, which then can be observed from the surface plasmon resonance in the photoluminescent ...
Nanoparticles are distinguished from microparticles (1-1000 μm), "fine particles" (sized between 100 and 2500 nm), and "coarse particles" (ranging from 2500 to 10,000 nm), because their smaller size drives very different physical or chemical properties, like colloidal properties and ultrafast optical effects [3] or electric properties.
A single-walled carbon nanotubes (SWCNT) can be envisioned as strip of a graphene molecule (a single sheet of graphite) rolled and joined into a seamless cylinder.The structure of the nanotube can be characterized by the width of this hypothetical strip (that is, the circumference c or diameter d of the tube) and the angle α of the strip relative to the main symmetry axes of the hexagonal ...