Search results
Results from the WOW.Com Content Network
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Zinc chloride is an inorganic chemical compound with the formula ZnCl 2 ·nH 2 O, with n ranging from 0 to 4.5, forming hydrates. Zinc chloride, anhydrous and its hydrates, are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride. [5]
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise.
The reaction of zinc with water is slowed by this passive layer. When this layer is corroded by acids such as hydrochloric acid and sulfuric acid, the reaction proceeds with the evolution of hydrogen gas. [1] [9] Zn + 2 H + → Zn 2+ + H 2. Zinc reacts with alkalis as with acids.
Hydrochloric acid is a strong inorganic acid that is used in many industrial processes such as refining metal. The application often determines the required product quality. [25] Hydrogen chloride, not hydrochloric acid, is used more widely in industrial organic chemistry, e.g. for vinyl chloride and dichloroethane. [8]
Water-reactive substances [1] are those that spontaneously undergo a chemical reaction with water, often noted as generating flammable gas. [2] Some are highly reducing in nature. [ 3 ] Notable examples include alkali metals , lithium through caesium , and alkaline earth metals , magnesium through barium .
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
Simply because a substance does not readily dissolve does not make it a weak electrolyte. Acetic acid (CH 3 COOH) and ammonium (NH + 4) are good examples. Acetic acid is extremely soluble in water, but most of the compound dissolves into molecules, rendering it a weak electrolyte. Weak bases and weak acids are generally weak electrolytes.