Search results
Results from the WOW.Com Content Network
In mathematics, projectivization is a procedure which associates with a non-zero vector space V a projective space P(V), whose elements are one-dimensional subspaces of V.More generally, any subset S of V closed under scalar multiplication defines a subset of P(V) formed by the lines contained in S and is called the projectivization of S.
An equivalent definition of a vector space can be given, which is much more concise but less elementary: the first four axioms (related to vector addition) say that a vector space is an abelian group under addition, and the four remaining axioms (related to the scalar multiplication) say that this operation defines a ring homomorphism from the ...
Origins from Alice's and Bob's perspectives. Vector computation from Alice's perspective is in red, whereas that from Bob's is in blue. The following characterization may be easier to understand than the usual formal definition: an affine space is what is left of a vector space after one has forgotten which point is the origin (or, in the words of the French mathematician Marcel Berger, "An ...
In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .
In this case, a Euclidean vector is an element of a normed vector space of finite dimension over the reals, or, typically, an element of the real coordinate space equipped with the dot product. This makes sense, as the addition in such a vector space acts freely and transitively on the vector space itself.
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring.The concept of a module also generalizes the notion of an abelian group, since the abelian groups are exactly the modules over the ring of integers.
Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.
The vector addition operation is the symmetric difference of two or more subgraphs, which forms another subgraph consisting of the edges that appear an odd number of times in the arguments to the symmetric difference operation. [1] A cycle basis is a basis of this vector space in which each basis vector represents a simple cycle.