enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Luhn algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_algorithm

    Luhn algorithm. The Luhn algorithm or Luhn formula, also known as the " modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple check digit formula used to validate a variety of identification numbers. It is described in US patent 2950048A, granted on 23 August 1960. [ 1]

  3. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [ 1] In the standard notation of modular arithmetic this congruence is written as.

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  5. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gk ≡ a (mod n ). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  6. Method of successive substitution - Wikipedia

    en.wikipedia.org/wiki/Method_of_successive...

    Adding our current modulus to the value that c represents, our new c = 10. ∴ c = 11d + 10, ∀d ∈ Z. 8. Our final step is to substitute c into the equation with respect to x that we found in step 6: x = 30c + 23 = 30(11d + 10) + 23 = 330d + 323. ∴ 330d + 323 represents all solutions that satisfies the system of congruences with which we ...

  7. Moduli space - Wikipedia

    en.wikipedia.org/wiki/Moduli_space

    Moduli spaces are spaces of solutions of geometric classification problems. That is, the points of a moduli space correspond to solutions of geometric problems. Here different solutions are identified if they are isomorphic (that is, geometrically the same). Moduli spaces can be thought of as giving a universal space of parameters for the problem.

  8. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    Montgomery modular multiplication relies on a special representation of numbers called Montgomery form. The algorithm uses the Montgomery forms of a and b to efficiently compute the Montgomery form of ab mod N. The efficiency comes from avoiding expensive division operations. Classical modular multiplication reduces the double-width product ab ...

  9. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = be mod m. From the definition of division, it follows that 0 ≤ c < m . For example, given b = 5, e = 3 and m = 13, dividing 53 = 125 by 13 leaves a remainder of c = 8 .