enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Substitution reaction - Wikipedia

    en.wikipedia.org/wiki/Substitution_reaction

    This results in S N 1 reactions usually occurring on atoms with at least two carbons bonded to them. [2] A more detailed explanation of this can be found in the main SN1 reaction page. S N 2 reaction mechanism. The S N 2 mechanism has just one step. The attack of the reagent and the expulsion of the leaving group happen simultaneously.

  3. SN2 reaction - Wikipedia

    en.wikipedia.org/wiki/SN2_reaction

    The bimolecular nucleophilic substitution (S N 2) is a type of reaction mechanism that is common in organic chemistry. In the S N 2 reaction, a strong nucleophile forms a new bond to an sp 3-hybridised carbon atom via a backside attack, all while the leaving group detaches from the reaction center in a concerted (i.e. simultaneous) fashion.

  4. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    The two main mechanisms were the S N 1 reaction and the S N 2 reaction, where S stands for substitution, N stands for nucleophilic, and the number represents the kinetic order of the reaction. [4] In the S N 2 reaction, the addition of the nucleophile and the elimination of leaving group take place simultaneously (i.e. a concerted reaction).

  5. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    An example of a reaction proceeding in a S N 1 fashion is the synthesis of 2,5-dichloro-2,5-dimethylhexane from the corresponding diol with concentrated hydrochloric acid: [8] As the alpha and beta substitutions increase with respect to leaving groups, the reaction is diverted from S N 2 to S N 1.

  6. Nucleophile - Wikipedia

    en.wikipedia.org/wiki/Nucleophile

    A hydroxide ion acting as a nucleophile in an S N 2 reaction, converting a haloalkane into an alcohol. In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they ...

  7. Nucleophilic aromatic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_aromatic...

    The following is the reaction mechanism of a nucleophilic aromatic substitution of 2,4-dinitrochlorobenzene (1) in a basic solution in water. Nucleophilic aromatic substitution Since the nitro group is an activator toward nucleophilic substitution, and a meta director, it is able to stabilize the additional electron density (via resonance) when ...

  8. SNi - Wikipedia

    en.wikipedia.org/wiki/SNi

    With standard S N 1 reaction conditions the reaction outcome is retention via a competing S N i mechanism and not racemization and with pyridine added the result is again inversion. [5] [3] S N i reaction mechanism Sn1 occurs in tertiary carbon while Sn2 occurs in primary carbon

  9. Chemical bond - Wikipedia

    en.wikipedia.org/wiki/Chemical_bond

    The electron density of these two bonding electrons in the region between the two atoms increases from the density of two non-interacting H atoms. Two p-orbitals forming a pi-bond. A double bond has two shared pairs of electrons, one in a sigma bond and one in a pi bond with electron density concentrated on two opposite sides of the ...