Search results
Results from the WOW.Com Content Network
The cell ceases its growth at 4N, 8N or 16N, becomes granular, and begins to produce platelets. [6] Thrombopoietin plays a role in inducing the megakaryocyte to form small proto-platelet processes. Platelets are held within these internal membranes within the cytoplasm of megakaryocytes. There are two proposed mechanisms for platelet release.
The megakaryoblast is a platelet precursor that undergoes endomitosis to form megakaryocytes that have 8 to 64 nuclei. Megakaryocytes shed platelets into the bloodstream. β1-tubulin microtubules, which are found in megakaryocytes, facilitate this process of shedding platelets into the bloodstream. [5]
Thrombopoietin is a glycoprotein hormone produced by the liver and kidney which regulates the production of platelets. It stimulates the production and differentiation of megakaryocytes, the bone marrow cells that bud off large numbers of platelets. [5] Megakaryocytopoiesis is the cellular development process that leads to platelet production.
The promegakaryocytes continue the process of endomitosis, which results in the formation of granular megakaryocytes as the nucleus forms lobes with increased volumes. The megakaryocytes release the platelets into the blood stream. [8] The process of platelet production, beginning with the formation of megakaryoblasts, takes about 7 days.
The platelet-rich plasma (PRP) is removed from the red cells, then centrifuged at a faster setting to harvest the platelets from the plasma. In other regions of the world, the unit of whole blood is centrifuged using settings that cause the platelets to become suspended in the " buffy coat " layer, which includes the platelets and the white ...
Megakaryocyte–erythroid progenitor cells must commit to becoming either platelet-producing megakaryocytes via megakaryopoiesis or erythrocyte-producing erythroblasts via erythropoiesis. [2] [3] Most of the blood cells produced in the bone marrow during hematopoiesis come from megakaryocyte–erythroid progenitor cells. [4]
They circulate in the blood of mammals and are involved in hemostasis, leading to the formation of blood clots. Platelets release thread-like fibers to form these clots. The normal range (99% of population analyzed) for platelets is 150,000 to 450,000 per cubic millimeter. [6] If the number of platelets is too low, excessive bleeding can occur.
Factor V is produced by megakaryocytes, which produce platelets and platelet-derived factor V, and hepatocytes, which produce plasma-derived factor V. [9] The molecule circulates in plasma as a single-chain molecule with a plasma half-life of 12–36 hours. [10] Factor V is able to bind to activated platelets and is activated by thrombin.