Search results
Results from the WOW.Com Content Network
In organic chemistry, an acetyl group is a functional group denoted by the chemical formula −COCH 3 and the structure −C(=O)−CH 3. It is sometimes represented by the symbol Ac [5] [6] (not to be confused with the element actinium). In IUPAC nomenclature, an acetyl group is called an ethanoyl group.
Functional group interconversion can be used in retrosynthetic analysis to plan organic synthesis. A functional group is a group of atoms in a molecule with distinctive chemical properties, regardless of the other atoms in the molecule. The atoms in a functional group are linked to each other and to the rest of the molecule by covalent bonds.
In organic chemistry, the acetoxy group (abbr. AcO or OAc; IUPAC name: acetyloxy [1]), is a functional group with the formula −OCOCH 3 and the structure −O−C(=O)−CH 3. As the -oxy suffix implies, it differs from the acetyl group (−C(=O)−CH 3) by the presence of an additional oxygen atom. The name acetoxy is the short form of acetyl-oxy.
It also contains an ester functional group (in red), and an acetyl functional group (encircled with dark green). Other divisions can be made. In organic chemistry, a moiety (/ ˈ m ɔɪ ə t i / MOY-ə-tee) is a part of a molecule [1] [2] that is given a name because it is identified as a part of other molecules as well.
In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.
In organic chemistry, an active ester is an ester functional group that is highly susceptible toward nucleophilic attack. Activation can be imparted by modifications of the acyl or the alkoxy components of a normal ester, say ethyl acetate. Typical modifications call for electronegative substituents.
In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, [1] including inorganic acids. It contains a double-bonded oxygen atom and an organyl group ( R−C=O ) or hydrogen in the case of formyl group ( H−C=O ).
In addition, acetyl-CoA is a precursor for the biosynthesis of various acetyl-chemicals, acting as an intermediate to transfer an acetyl group during the biosynthesis of those acetyl-chemicals. Acetyl-CoA is also involved in the regulation of various cellular mechanisms by providing acetyl groups to target amino acid residues for post ...