Search results
Results from the WOW.Com Content Network
An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory , especially in Bernoulli processes .
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
The geometric mean of two positive numbers is never greater than the arithmetic mean. [3] So the geometric means are an increasing sequence g 0 ≤ g 1 ≤ g 2 ≤ ...; the arithmetic means are a decreasing sequence a 0 ≥ a 1 ≥ a 2 ≥ ...; and g n ≤ M(x, y) ≤ a n for any n. These are strict inequalities if x ≠ y.
The more general class of p-series, =, exemplifies the possible results of the test: If p ≤ 0, then the nth-term test identifies the series as divergent. If 0 < p ≤ 1, then the nth-term test is inconclusive, but the series is divergent by the integral test for convergence.
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
Arithmetico-geometric sequence; D. Divergent geometric series; G. Grandi's series; Template:Grandi's series This page was last edited on 26 September 2015, at 21:53 ...
if L > 1 the series converges (this includes the case L = ∞) if L < 1 the series diverges; and if L = 1 the test is inconclusive. An alternative formulation of this test is as follows. Let { a n} be a series of real numbers. Then if b > 1 and K (a natural number) exist such that