enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overshoot (signal) - Wikipedia

    en.wikipedia.org/wiki/Overshoot_(signal)

    In control theory, overshoot refers to an output exceeding its final, steady-state value. [2] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step

  3. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    In control theory, overshoot refers to an output exceeding its final, steady-state value. [13] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one.

  4. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    How overshoot may be controlled by appropriate parameter choices is discussed next. Using the equations above, the amount of overshoot can be found by differentiating the step response and finding its maximum value. The result for maximum step response S max is: [3]

  5. Settling time - Wikipedia

    en.wikipedia.org/wiki/Settling_time

    Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail

  6. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The equation relates values of the Riemann zeta function at the points s and 1 − s, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that ζ ( s ) has a simple zero at each even negative integer s = −2 n , known as the trivial zeros of ζ ( s ) .

  7. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  8. Local zeta function - Wikipedia

    en.wikipedia.org/wiki/Local_zeta_function

    In number theory, the local zeta function Z(V, s) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as (,) = ⁡ (= ())where V is a non-singular n-dimensional projective algebraic variety over the field F q with q elements and N k is the number of points of V defined over the finite field extension F q k of F q.

  9. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The equation z = e sT maps continuous s-plane poles (not zeros) into the z-domain, where T is the sampling period. The stable, left half s -plane maps into the interior of the unit circle of the z -plane, with the s -plane origin equating to |z| = 1 (because e 0 = 1).