enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of unsolved problems in computer science - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Can 3SUM be solved in strongly sub-quadratic time, that is, in time O(n 2−ϵ) for some ϵ>0? Can the edit distance between two strings of length n be computed in strongly sub-quadratic time? (This is only possible if the strong exponential time hypothesis is false.) Can X + Y sorting be done in o(n 2 log n) time?

  3. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Feedback arc set [2] [3]: GT8 Graph coloring [2] [3]: GT4 Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.

  4. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  5. No-three-in-line problem - Wikipedia

    en.wikipedia.org/wiki/No-three-in-line_problem

    The fact that the no-three-in-line problem has a solution with linearly many points can be translated into graph drawing terms as meaning that every graph, even a complete graph, can be drawn without unwanted vertex-edge incidences using a grid whose area is quadratic in the number of vertices, and that for complete graphs no such drawing with ...

  6. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. An important unsolved problem in complexity theory is whether the graph isomorphism problem is in P, NP-complete, or NP-intermediate. The answer is not known, but it is believed that the problem is at least not NP-complete. [20]

  7. Havel–Hakimi algorithm - Wikipedia

    en.wikipedia.org/wiki/Havel–Hakimi_algorithm

    A simple graph contains no double edges or loops. [1] The degree sequence is a list of numbers in nonincreasing order indicating the number of edges incident to each vertex in the graph. [2] If a simple graph exists for exactly the given degree sequence, the list of integers is called graphic. The Havel-Hakimi algorithm constructs a special ...

  8. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    In this decision problem, the input is a graph G and a number k; the desired output is yes if G contains a path of k or more edges, and no otherwise. [1] If the longest path problem could be solved in polynomial time, it could be used to solve this decision problem, by finding a longest path and then comparing its length to the number k ...

  9. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The number 1 (expressed as a fraction 1/1) is placed at the root of the tree, and the location of any other number a/b can be found by computing gcd(a,b) using the original form of the Euclidean algorithm, in which each step replaces the larger of the two given numbers by its difference with the smaller number (not its remainder), stopping when ...