enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tilt test (geotechnical engineering) - Wikipedia

    en.wikipedia.org/wiki/Tilt_test_(Geotechnical...

    The tilt-angle equals the material friction of the discontinuity wall plus the roughness i-angle (tilt-angle = φ wall material + i) if no real cohesion is present (i.e. no cementing or gluing material between the two blocks), no infill material is present, the asperities do not break, and the walls of the discontinuity are completely fitting at the start of the test, while if the walls of the ...

  3. Soil mechanics - Wikipedia

    en.wikipedia.org/wiki/Soil_mechanics

    The angle of internal friction is thus closely related to the maximum stable slope angle, often called the angle of repose. But in addition to friction, soil derives significant shear resistance from interlocking of grains. If the grains are densely packed, the grains tend to spread apart from each other as they are subject to shear strain.

  4. Dilatancy (granular material) - Wikipedia

    en.wikipedia.org/wiki/Dilatancy_(granular_material)

    The relationship between dilation and internal friction is typically illustrated by the sawtooth model of dilatancy where the angle of dilation is analogous to the angle made by the teeth to the horizontal. Such a model can be used to infer that the observed friction angle is equal to the dilation angle plus the friction angle for zero dilation.

  5. Direct shear test - Wikipedia

    en.wikipedia.org/wiki/Direct_shear_test

    A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil [1] [2] or rock [2] material, or of discontinuities in soil or rock masses. [2] [3] The U.S. and U.K. standards defining how the test should be performed are ASTM D 3080, AASHTO T236 and BS 1377-7:1990, respectively.

  6. Shear strength (soil) - Wikipedia

    en.wikipedia.org/wiki/Shear_strength_(soil)

    The soil is free to dilate or contract during shear if the soil is drained. In reality, soil is partially drained, somewhere between the perfectly undrained and drained idealized conditions. The shear strength of soil depends on the effective stress, the drainage conditions, the density of the particles, the rate of strain, and the direction of ...

  7. Rankine theory - Wikipedia

    en.wikipedia.org/wiki/Rankine_theory

    This theory, which considers the soil to be in a state of plastic equilibrium, makes the assumptions that the soil is homogeneous, isotropic and has internal friction. The pressure exerted by soil against the wall is referred to as active pressure. The resistance offered by the soil to an object pushing against it is referred to as "passive ...

  8. Cohesion (geology) - Wikipedia

    en.wikipedia.org/wiki/Cohesion_(geology)

    Cohesion is the component of shear strength of a rock or soil that is independent of interparticle friction. In soils, true cohesion is caused by following: Electrostatic forces in stiff overconsolidated clays (which may be lost through weathering) Cementing by Fe 2 O 3, Ca CO 3, Na Cl, etc. There can also be apparent cohesion. This is caused by:

  9. Angle of repose - Wikipedia

    en.wikipedia.org/wiki/Angle_of_repose

    Angle of repose of a heap of sand Sandpile from the Matemateca collection. The angle of repose, or critical angle of repose, [1] of a granular material is the steepest angle of descent or dip relative to the horizontal plane on which the material can be piled without slumping. At this angle, the material on the slope face is on the verge of ...