Search results
Results from the WOW.Com Content Network
Double-ended queues can also be implemented as a purely functional data structure. [3]: 115 Two versions of the implementation exist. The first one, called 'real-time deque, is presented below. It allows the queue to be persistent with operations in O(1) worst-case time, but requires lazy lists with memoization. The second one, with no lazy ...
Queues may be implemented as a separate data type, or maybe considered a special case of a double-ended queue (deque) and not implemented separately. For example, Perl and Ruby allow pushing and popping an array from both ends, so one can use push and shift functions to enqueue and dequeue a list (or, in reverse, one can use unshift and pop ...
Deque creates a double-ended queue. While a regular Queue only allows insertions at the rear and removals at the front, the Deque allows insertions or removals to take place both at the front and the back. A Deque is like a Queue that can be used forwards or backwards, or both at once. Additionally, both a forwards and a backwards iterator can ...
In computer science, a double-ended priority queue (DEPQ) [1] or double-ended heap [2] is a data structure similar to a priority queue or heap, but allows for efficient removal of both the maximum and minimum, according to some ordering on the keys (items) stored in the structure. Every element in a DEPQ has a priority or value.
While priority queues are often implemented using heaps, they are conceptually distinct from heaps. A priority queue is an abstract data type like a list or a map; just as a list can be implemented with a linked list or with an array, a priority queue can be implemented with a heap or another method such as an ordered array.
Modern object-oriented languages, such as C++ and Java, support a form of abstract data types. When a class is used as a type, it is an abstract type that refers to a hidden representation. In this model, an ADT is typically implemented as a class, and each instance of the ADT is usually an object of that class
This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. [3] Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure.
Pages in category "Priority queues" The following 13 pages are in this category, out of 13 total. ... Double-ended priority queue; K. Kinetic priority queue; L ...