Search results
Results from the WOW.Com Content Network
Reactive oxygen species are implicated in cellular activity to a variety of inflammatory responses including cardiovascular disease. They may also be involved in hearing impairment via cochlear damage induced by elevated sound levels , in ototoxicity of drugs such as cisplatin , and in congenital deafness in both animals and humans.
Mouth breathing as a result of decreased nasal breathing also increases lung surface exposure to irritants, pollutants, and allergens, causing neutrophilic inflammation in response to reactive oxygen species formation; research has found that individuals with genetically hindered glutathione counteraction of this oxidative stress are likely at ...
Production of mitochondrial ROS, mitochondrial ROS. Mitochondrial ROS (mtROS or mROS) are reactive oxygen species (ROS) that are produced by mitochondria. [1] [2] [3] Generation of mitochondrial ROS mainly takes place at the electron transport chain located on the inner mitochondrial membrane during the process of oxidative phosphorylation.
After being carried in blood to a body tissue in need of oxygen, O 2 is handed off from the heme group to monooxygenase, an enzyme that also has an active site with an atom of iron. [9] Monooxygenase uses oxygen for many oxidation reactions in the body. Oxygen that is suspended in the blood plasma equalizes into the tissue according to Henry's law.
Recent investigations suggest that complex I is a potent source of reactive oxygen species. [53] Complex I can produce superoxide (as well as hydrogen peroxide), through at least two different pathways. During forward electron transfer, only very small amounts of superoxide are produced (probably less than 0.1% of the overall electron flow).
Oxidation response is stimulated by a disturbance in the balance between the production of reactive oxygen species and antioxidant responses, known as oxidative stress. Active species of oxygen naturally occur in aerobic cells and have both intracellular and extracellular sources.
In mammalian biology, singlet oxygen is one of the reactive oxygen species, which is linked to oxidation of LDL cholesterol and resultant cardiovascular effects. Polyphenol antioxidants can scavenge and reduce concentrations of reactive oxygen species and may prevent such deleterious oxidative effects. [36]
As a member of the iron/manganese superoxide dismutase family, this protein transforms toxic superoxide, a byproduct of the mitochondrial electron transport chain, into hydrogen peroxide and diatomic oxygen. [5] This function allows SOD2 to clear mitochondrial reactive oxygen species (ROS) and, as a result, confer protection against cell death. [7]