Search results
Results from the WOW.Com Content Network
The controller performs tasks, processes data and controls the functionality of other components in the sensor node. While the most common controller is a microcontroller, other alternatives that can be used as a controller are: a general purpose desktop microprocessor, digital signal processors, FPGAs and ASICs.
Wireless sensor networks are composed of low-energy, small-size, and low-range unattended sensor nodes. Recently, it has been observed that by periodically turning on and off the sensing and communication capabilities of sensor nodes, we can significantly reduce the active time and thus prolong network lifetime.
WSN routing protocols provide the required functionality but cannot handle the high frequency of topology changes. Whereas, MANET routing protocols can deal with mobility in the network but they are designed for two way communication, which in sensor networks is often not required.
The engineering design process, also known as the engineering method, is a common series of steps that engineers use in creating functional products and processes. The process is highly iterative – parts of the process often need to be repeated many times before another can be entered – though the part(s) that get iterated and the number of such cycles in any given project may vary.
Key distribution is an important issue in wireless sensor network (WSN) design. [1] WSNs are networks of small, battery-powered, memory-constraint devices named sensor nodes, which have the capability of wireless communication over a restricted area. [2]
IEEE 802.15.4 protocol stack. Devices are designed to interact with each other over a conceptually simple wireless network.The definition of the network layers is based on the OSI model; although only the lower layers are defined in the standard, interaction with upper layers is intended, possibly using an IEEE 802.2 logical link control sublayer accessing the MAC through a convergence sublayer.
Network planning and design is an iterative process, encompassing topological design, network-synthesis, and network-realization, and is aimed at ensuring that a new telecommunications network or service meets the needs of the subscriber and operator. [1] The process can be tailored according to each new network or service. [2]
It is a process because a sequence of steps is prescribed to produce or change the architecture, and/or a design from that architecture, of a hardware system within a set of constraints. It is a discipline because a body of knowledge is used to inform practitioners as to the most effective way to design the system within a set of constraints.