enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  3. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The area bounded by the intersection of a line and a parabola is 4/3 that of the triangle having the same base and height (the quadrature of the parabola); The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes;

  4. Elliptic geometry - Wikipedia

    en.wikipedia.org/wiki/Elliptic_geometry

    For example, the first and fourth of Euclid's postulates, that there is a unique line between any two points and that all right angles are equal, hold in elliptic geometry. Postulate 3, that one can construct a circle with any given center and radius, fails if "any radius" is taken to mean "any real number", but holds if it is taken to mean ...

  5. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    Hence, it is confocal to the given ellipse and the length of the string is l = 2r x + (a − c). Solving for r x yields r x = ⁠ 1 / 2 ⁠ (l − a + c); furthermore r 2 y = r 2 x − c 2. From the upper diagram we see that S 1 and S 2 are the foci of the ellipse section of the ellipsoid in the xz-plane and that r 2 z = r 2 x − a 2.

  6. Inscribed figure - Wikipedia

    en.wikipedia.org/wiki/Inscribed_figure

    Every triangle can be inscribed in an ellipse, called its Steiner circumellipse or simply its Steiner ellipse, whose center is the triangle's centroid. Every triangle has an infinitude of inscribed ellipses. One of them is a circle, and one of them is the Steiner inellipse which is tangent to the triangle at the midpoints of the sides.

  7. Flattening - Wikipedia

    en.wikipedia.org/wiki/Flattening

    Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity , or oblateness . The usual notation for flattening is f {\displaystyle f} and its definition in terms of the semi-axes a {\displaystyle a} and b {\displaystyle b} of ...

  8. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    An ellipse has two axes and two foci. Unlike most other elementary shapes, such as the circle and square, there is no algebraic equation to determine the perimeter of an ellipse. Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.

  9. Locus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Locus_(mathematics)

    Ellipse: the set of points for each of which the sum of the distances to two given foci is a constant; Other examples of loci appear in various areas of mathematics. For example, in complex dynamics, the Mandelbrot set is a subset of the complex plane that may be characterized as the connectedness locus of a family of polynomial maps.