Search results
Results from the WOW.Com Content Network
A side (regarded as a great circle arc) is measured by the angle that it subtends at the centre. On the unit sphere, this radian measure is numerically equal to the arc length. By convention, the sides of proper spherical triangles are less than π , so that 0 < a + b + c < 2 π {\displaystyle 0<a+b+c<2\pi } (Todhunter, [ 1 ] Art.22,32).
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
Fig. 3 – Applications of the law of cosines: unknown side and unknown angle. Given triangle sides b and c and angle γ there are sometimes two solutions for a. The theorem is used in solution of triangles, i.e., to find (see Figure 3): the third side of a triangle if two sides and the angle between them is known: = + ;
Two sides and the included angle (SAS, side-angle-side) Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is shorter than the other side length. A side and the two angles adjacent to it (ASA) A side, the angle opposite to it and an angle adjacent to it (AAS).
Hart circle, a circle associated with certain circular triangles; Hyperbolic triangle, a triangle that has straight sides in hyperbolic geometry, but is drawn as circular in some models of hyperbolic geometry; Lune and Lens, two-sided figures bounded by circular arcs; Sine-triple-angle circle
In addition, the three angles MA´B, MB´C and MC´A (green in the diagram) are all equal, as are the three supplementary angles MA´C, MB´A and MC´B. [2] [3] The theorem (and its corollary) follow from the properties of cyclic quadrilaterals. Let the circumcircles of A'B'C and AB'C' meet at ′.
Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]
The side opposite angle α meets the circle twice: once at each end; in each case at angle α (similarly for the other two angles). This is due to the alternate segment theorem , which states that the angle between the tangent and chord equals the angle in the alternate segment.