enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    In more recent years, computer programs have been used to find and calculate more precise approximations of the perimeter of an ellipse. In an online video about the perimeter of an ellipse, recreational mathematician and YouTuber Matt Parker, using a computer program, calculated numerous approximations for the perimeter of an ellipse. [4]

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  4. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in ...

  5. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge.

  6. Elliptic integral - Wikipedia

    en.wikipedia.org/wiki/Elliptic_integral

    For an ellipse with semi-major axis a and semi-minor axis b and eccentricity e = √ 1 − b 2 /a 2, the complete elliptic integral of the second kind E(e) is equal to one quarter of the circumference C of the ellipse measured in units of the semi-major axis a. In other words: = ().

  7. Eccentric anomaly - Wikipedia

    en.wikipedia.org/wiki/Eccentric_anomaly

    Consider the ellipse with equation given by: + =, where a is the semi-major axis and b is the semi-minor axis. For a point on the ellipse, P = P(x, y), representing the position of an orbiting body in an elliptical orbit, the eccentric anomaly is the angle E in the

  8. Jacobi elliptic functions - Wikipedia

    en.wikipedia.org/wiki/Jacobi_elliptic_functions

    Plot of the Jacobi ellipse (x 2 + y 2 /b 2 = 1, b real) and the twelve Jacobi elliptic functions pq(u,m) for particular values of angle φ and parameter b. The solid curve is the ellipse, with m = 1 − 1/b 2 and u = F(φ,m) where F(⋅,⋅) is the elliptic integral of the first kind (with parameter =). The dotted curve is the unit circle.

  9. Elliptical polarization - Wikipedia

    en.wikipedia.org/wiki/Elliptical_polarization

    When increases from zero, i.e., assumes positive values, the line evolves into an ellipse that is being traced out in the counterclockwise direction (looking in the direction of the propagating wave); this then corresponds to left-handed elliptical polarization; the semi-major axis is now oriented at an angle .