Search results
Results from the WOW.Com Content Network
Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...
Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).
Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Matlab: The neural network toolbox has explicit functionality designed to produce a time delay neural network give the step size of time delays and an optional training function. The default training algorithm is a Supervised Learning back-propagation algorithm that updates filter weights based on the Levenberg-Marquardt optimizations.
Simplified example of training a neural network for object detection: The network is trained on multiple images depicting either starfish or sea urchins, which are correlated with "nodes" that represent visual features. The starfish match with a ringed texture and a star outline, whereas most sea urchins match with a striped texture and oval shape.
It is hypothesized that the elementary biological unit is an active cell, called neuron, and the human machine is run by a vast network that connects these neurons, called neural (or neuronal) network. [5] The neural network is integrated with the human organs to form the human machine comprising the nervous system. [citation needed]
For example, multilayer perceptron (MLPs) and time delay neural network (TDNNs) have limitations on the input data flexibility, as they require their input data to be fixed. Standard recurrent neural network (RNNs) also have restrictions as the future input information cannot be reached from the current state. On the contrary, BRNNs do not ...