Search results
Results from the WOW.Com Content Network
An X-ray generator generally contains an X-ray tube to produce the X-rays. Possibly, radioisotopes can also be used to generate X-rays. [1]An X-ray tube is a simple vacuum tube that contains a cathode, which directs a stream of electrons into a vacuum, and an anode, which collects the electrons and is made of tungsten to evacuate the heat generated by the collision.
Ultrasonography machine: uses ultrasound to produce images from within the body; video link: X-ray: uses X-rays to produce images of structures within the body; video link: Contrast media for X-rays: to provide a high contrast image of the details of the viscera under study; e.g. salts of heavy metals, gas like air, radio-opaque dyes, organic ...
Lead is the most common shield against X-rays because of its high density (11,340 kg/m 3), stopping power, ease of installation and low cost. The maximum range of a high-energy photon such as an X-ray in matter is infinite; at every point in the matter traversed by the photon, there is a probability of interaction.
X-ray generators produce X-rays by applying a high voltage between the cathode and the anode of an X-ray tube and in heating the tube filament to start the electron emission. The electrons are then accelerated in the resulting electric potential and collide with the anode, which is usually made of Tungsten .
A 200 kV orthovoltage X-ray tube used for radiation therapy, 1938. Orthovoltage X-ray machines are similar to diagnostic (radiography) X-ray machines, except that higher voltages are used and the X-ray tube is longer, to prevent the high voltages from arcing across the tube. ICD10 =
Megavoltage X-rays are produced by linear accelerators ("linacs") operating at voltages in excess of 1000 kV (1 MV) range, and therefore have an energy in the MeV range. The voltage in this case refers to the voltage used to accelerate electrons in the linear accelerator and indicates the maximum possible energy of the photons which are subsequently produced. [1]
Fish bone pierced in the upper esophagus. Right image without contrast medium, left image during swallowing with contrast medium. To obtain an image with any type of image detector the part of the patient to be X-rayed is placed between the X-ray source and the image receptor to produce a shadow of the internal structure of that particular part of the body.
Just as movies, TV, and web videos are to a substantive extent no longer separate technologies, but only variations on common underlying digital themes, so, too, are the X-ray imaging modes, and indeed, the term "X-ray imaging" is the ultimate hypernym that unites all of them, even subsuming both fluoroscopy and four-dimensional CT (4DCT ...