Ad
related to: linear quadratic regulator example equation with solution of 3
Search results
Results from the WOW.Com Content Network
The case where the system dynamics are described by a set of linear differential equations and the cost is described by a quadratic function is called the LQ problem. One of the main results in the theory is that the solution is provided by the linear–quadratic regulator ( LQR ), a feedback controller whose equations are given below.
This control law which is known as the LQG controller, is unique and it is simply a combination of a Kalman filter (a linear–quadratic state estimator (LQE)) together with a linear–quadratic regulator (LQR). The separation principle states that the state estimator and the state feedback can be designed independently.
With multiple state variables and multiple control variables, the Riccati equation will be a matrix equation. The algebraic Riccati equation determines the solution of the infinite-horizon time-invariant Linear-Quadratic Regulator problem (LQR) as well as that of the infinite horizon time-invariant Linear-Quadratic-Gaussian control problem (LQG
A set of differential equations forms a physics engine which maps the control input to the state space of the system. The forward model is able to simulate the given domain. For example, if the user pushes a cart to the left, a pendulum mounted on the cart will react with a motion. The exact force is determined by newton's laws of motion.
A particular form of the LQ problem that arises in many control system problems is that of the linear quadratic regulator (LQR) where all of the matrices (i.e., , , , and ) are constant, the initial time is arbitrarily set to zero, and the terminal time is taken in the limit (this last assumption is what is known as infinite horizon). The LQR ...
The Kalman filter, the linear-quadratic regulator, and the linear–quadratic–Gaussian controller are solutions to what arguably are the most fundamental problems of control theory. In most applications, the internal state is much larger (has more degrees of freedom ) than the few "observable" parameters which are measured.
where is the gain of the optimal linear-quadratic regulator obtained by taking = = and () deterministic, and where is the Kalman gain. There is also a non-Gaussian version of this problem (to be discussed below) where the Wiener process w {\displaystyle w} is replaced by a more general square-integrable martingale with possible jumps. [ 1 ]
The main advantage of MPC is the fact that it allows the current timeslot to be optimized, while keeping future timeslots in account. This is achieved by optimizing a finite time-horizon, but only implementing the current timeslot and then optimizing again, repeatedly, thus differing from a linear–quadratic regulator . Also MPC has the ...
Ad
related to: linear quadratic regulator example equation with solution of 3