Search results
Results from the WOW.Com Content Network
Copper(I) iodide is white, but samples often appear tan or even, when found in nature as rare mineral marshite, reddish brown, but such color is due to the presence of impurities. It is common for samples of iodide-containing compounds to become discolored due to the facile aerobic oxidation of the iodide anion to molecular iodine. [4] [5] [6]
The low solubility of silver iodide and lead iodide reflects the covalent character of these metal iodides. A test for the presence of iodide ions is the formation of yellow precipitates of these compounds upon treatment of a solution of silver nitrate or lead(II) nitrate. [2] Aqueous solutions of iodide salts dissolve iodine better than pure ...
Copper is a chemical element with the symbol Cu (from Latin: cuprum) and the atomic number of 29. It is easily recognisable, due to its distinct red-orange color.Copper also has a range of different organic and inorganic salts, having varying oxidation states ranging from (0,I) to (III).
Hydrogen iodide. The simplest compound of iodine is hydrogen iodide, HI.It is a colourless gas that reacts with oxygen to give water and iodine. Although it is useful in iodination reactions in the laboratory, it does not have large-scale industrial uses, unlike the other hydrogen halides.
Copper forms coordination complexes with ligands. In aqueous solution, copper(II) exists as [Cu(H 2 O) 6] 2+. This complex exhibits the fastest water exchange rate (speed of water ligands attaching and detaching) for any transition metal aquo complex. Adding aqueous sodium hydroxide causes the precipitation of light blue solid copper(II ...
The flow of a gas or hydrocarbon liquid down a pipe line causes erosion as a result of the contact between the pipe wall and the medium being transported. The main factors that increase erosion are the flow rate and the contamination levels present in the gas or hydrocarbon fluid.
Upon heating the solid to 146 °C, this material adopts the alpha-polymorph. In this form, the iodide ions form a rigid cubic framework, and the Ag+ centers are molten. The electrical conductivity of the solid increases by 4000x. Similar behavior is observed for copper(I) iodide (CuI), rubidium silver iodide (RbAg 4 I 5), [9] and Ag 2 HgI 4.
This page was last edited on 10 January 2009, at 17:28 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.