Search results
Results from the WOW.Com Content Network
The sum of the squared lengths of any two perpendicular chords intersecting at a given point is the same as that of any other two perpendicular chords intersecting at the same point, and is given by 8r 2 – 4p 2 (where r is the circle's radius and p is the distance from the center point to the point of intersection). [5]
Suppose that two lines have the equations y = ax + c and y = bx + d where a and b are the slopes (gradients) of the lines and where c and d are the y-intercepts of the lines. At the point where the two lines intersect (if they do), both y coordinates will be the same, hence the following equality: + = +.
This occurs if the lines are parallel, or if they intersect each other. Two lines that are not coplanar are called skew lines . Distance geometry provides a solution technique for the problem of determining whether a set of points is coplanar, knowing only the distances between them.
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).
Lines perpendicular to line l are modeled by chords whose extension passes through the pole of l. Hence we draw the unique line between the poles of the two given lines, and intersect it with the boundary circle; the chord of intersection will be the desired common perpendicular of the ultraparallel lines.
Depending on how the line segment is defined, either of the two end points may or may not be part of the line segment. Two or more line segments may have some of the same relationships as lines, such as being parallel, intersecting, or skew, but unlike lines they may be none of these, if they are coplanar and either do not intersect or are ...
In elliptic geometry, two lines perpendicular to a given line must intersect. In fact, all perpendiculars to a given line intersect at a single point called the absolute pole of that line. Every point corresponds to an absolute polar line of which it is the absolute pole. Any point on this polar line forms an absolute conjugate pair with the
The line segments OT 1 and OT 2 are radii of the circle C; since both are inscribed in a semicircle, they are perpendicular to the line segments PT 1 and PT 2, respectively. But only a tangent line is perpendicular to the radial line. Hence, the two lines from P and passing through T 1 and T 2 are tangent to the circle C.