enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convex preferences - Wikipedia

    en.wikipedia.org/wiki/Convex_preferences

    A set of convex-shaped indifference curves displays convex preferences: Given a convex indifference curve containing the set of all bundles (of two or more goods) that are all viewed as equally desired, the set of all goods bundles that are viewed as being at least as desired as those on the indifference curve is a convex set.

  3. Modulus and characteristic of convexity - Wikipedia

    en.wikipedia.org/wiki/Modulus_and_characteristic...

    In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.

  4. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    An example of a function which is convex but not strictly convex is (,) = +. This function is not strictly convex because any two points sharing an x coordinate will have a straight line between them, while any two points NOT sharing an x coordinate will have a greater value of the function than the points between them.

  5. Complex convexity - Wikipedia

    en.wikipedia.org/wiki/Complex_convexity

    Examples of classes of functions with a rich structure are, in addition to the convex functions, the subharmonic functions and the plurisubharmonic functions. Geometrically, these classes of functions correspond to convex domains and pseudoconvex domains, but there are also other types of domains, for instance lineally convex domains which can ...

  6. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    For example, the problem of maximizing a concave function can be re-formulated equivalently as the problem of minimizing the convex function . The problem of maximizing a concave function over a convex set is commonly called a convex optimization problem. [8]

  7. Proper convex function - Wikipedia

    en.wikipedia.org/wiki/Proper_convex_function

    For every proper convex function : [,], there exist some and such that ()for every .. The sum of two proper convex functions is convex, but not necessarily proper. [4] For instance if the sets and are non-empty convex sets in the vector space, then the characteristic functions and are proper convex functions, but if = then + is identically equal to +.

  8. Logarithmically concave function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    This follows from the fact that the logarithm is monotone implying that the superlevel sets of this function are convex. [1] Every concave function that is nonnegative on its domain is log-concave. However, the reverse does not necessarily hold. An example is the Gaussian function f(x) = exp(−x 2 /2) which is log-concave since log f(x) = −x ...

  9. Convex metric space - Wikipedia

    en.wikipedia.org/wiki/Convex_metric_space

    Any convex set in a Euclidean space is a convex metric space with the induced Euclidean norm. For closed sets the converse is also true: if a closed subset of a Euclidean space together with the induced distance is a convex metric space, then it is a convex set (this is a particular case of a more general statement to be discussed below).