Search results
Results from the WOW.Com Content Network
The chain-ladder or development [1] method is a prominent [2] [3] actuarial loss reserving technique. The chain-ladder method is used in both the property and casualty [1] [4] and health insurance [5] fields. Its intent is to estimate incurred but not reported claims and project ultimate loss amounts. [5]
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
After relating area to the number of triangles in this way, the proof concludes by using Euler's polyhedral formula to relate the number of triangles to the number of grid points in the polygon. [5] Tiling of the plane by copies of a triangle with three integer vertices and no other integer points, as used in the proof of Pick's theorem
In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.
Actuarial notation is a shorthand method to allow actuaries to record mathematical formulas that deal with interest rates and life tables. Traditional notation uses a halo system, where symbols are placed as superscript or subscript before or after the main letter. Example notation using the halo system can be seen below.
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.
However, the triangles may vary in shape and extension in object space, posing a potential drawback. This can be minimized through adaptive methods that consider step width while triangulating the parameter area. To triangulate an implicit surface (defined by one or more equations) is more difficult. There exist essentially two methods.