enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chain-ladder method - Wikipedia

    en.wikipedia.org/wiki/Chain-ladder_method

    The chain-ladder or development [1] method is a prominent [2] [3] actuarial loss reserving technique. The chain-ladder method is used in both the property and casualty [1] [4] and health insurance [5] fields. Its intent is to estimate incurred but not reported claims and project ultimate loss amounts. [5]

  3. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  4. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    Therefore, each triangle has area , as needed for the proof. [5] A different proof that these triangles have area is based on the use of Minkowski's theorem on lattice points in symmetric convex sets. [10] Subdivision of a grid polygon into special triangles. This already proves Pick's formula for a polygon that is one of these special triangles.

  5. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  6. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.

  7. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  8. Actuarial notation - Wikipedia

    en.wikipedia.org/wiki/Actuarial_notation

    Actuarial notation is a shorthand method to allow actuaries to record mathematical formulas that deal with interest rates and life tables. Traditional notation uses a halo system, where symbols are placed as superscript or subscript before or after the main letter. Example notation using the halo system can be seen below.

  9. Surface triangulation - Wikipedia

    en.wikipedia.org/wiki/Surface_triangulation

    However, the triangles may vary in shape and extension in object space, posing a potential drawback. This can be minimized through adaptive methods that consider step width while triangulating the parameter area. To triangulate an implicit surface (defined by one or more equations) is more difficult. There exist essentially two methods.