Search results
Results from the WOW.Com Content Network
4. Written as a function of another function, it is used for comparing the asymptotic growth of two functions. See Big O notation § Related asymptotic notations. 5. In number theory, may denote the prime omega function. That is, () is the number of distinct prime factors of the integer n.
This list is incomplete; you can help by adding missing items. ( January 2011 ) Latin and Greek letters are used in mathematics , science , engineering , and other areas where mathematical notation is used as symbols for constants , special functions , and also conventionally for variables representing certain quantities.
The above definition of a function is essentially that of the founders of calculus, Leibniz, Newton and Euler. However, it cannot be formalized, since there is no mathematical definition of an "assignment". It is only at the end of the 19th century that the first formal definition of a function could be provided, in terms of set theory.
A function is called regular if it satisfies satisfactory continuity and differentiability properties, which are often context-dependent. These properties might include possessing a specified number of derivatives, with the function and its derivatives exhibiting some nice property (see nice above), such as Hölder continuity.
arcosech – inverse hyperbolic cosecant function. (Also written as arcsch.) arcosh – inverse hyperbolic cosine function. arcoth – inverse hyperbolic cotangent function. arcsch – inverse hyperbolic cosecant function. (Also written as arcosech.) arcsec – inverse secant function. arcsin – inverse sine function. arctan – inverse ...
Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities.
A definition of something as the unique object with a given property descriptive function A function taking values that need not be truth values, in other words what is not called just a function. diversity The inequality relation domain The domain of a relation R is the class of x such that xRy for some y. elementary proposition
History of mathematical notation; History of the Hindu–Arabic numeral system; Glossary of mathematical symbols; List of mathematical symbols by subject; Mathematical notation; Mathematical operators and symbols in Unicode