Search results
Results from the WOW.Com Content Network
In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotations and translations in space and time form the inhomogeneous Galilean group (assumed throughout ...
John David Jackson's Classical Electrodynamics introduces a Galilean transformation for the Faraday's equation and gives an example of a quasi-electrostatic case that also fulfills a Galilean transformation. [10]: 209–210 Jackson states that the wave equation is not invariant under Galilean transformations. [10]: 515–516
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
Going from the primed frame to the unprimed frame was accomplished by making v in the first equation negative, and then exchanging primed variables for unprimed ones, and vice versa. Also, as length contraction does not affect the perpendicular dimensions of an object, the following remain the same as in the Galilean transformation:
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
Classical mechanics utilises many equations—as well as other mathematical concepts—which relate various physical quantities to one another. These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these.
Measurements of objects in one inertial frame can be converted to measurements in another by a simple transformation — the Galilean transformation in Newtonian physics or the Lorentz transformation (combined with a translation) in special relativity; these approximately match when the relative speed of the frames is low, but differ as it ...