Search results
Results from the WOW.Com Content Network
The strength of the bonds between the metal ion and water molecules in the primary solvation shell increases with the electrical charge, z, on the metal ion and decreases as its ionic radius, r, increases. Aqua ions are subject to hydrolysis. The logarithm of the first hydrolysis constant is proportional to z 2 /r for most aqua ions.
Its chemistry is largely covalent in nature, noting it can form salt-like carbides with highly electropositive metals. The common oxide of carbon (CO 2) is a medium-strength acidic oxide. Silicon has a blue-grey metallic lustre. Silicon is a metallic-looking relatively unreactive solid with a density of 2.3290 g/cm 3, and is hard (MH 6.5) and ...
The bond length, or the minimum separating distance between two atoms participating in bond formation, is determined by their repulsive and attractive forces along the internuclear direction. [3] As the two atoms get closer and closer, the positively charged nuclei repel, creating a force that attempts to push the atoms apart.
Nonmetals have relatively high values of electronegativity, and their oxides are usually acidic. Exceptions may occur if a nonmetal is not very electronegative, or if its oxidation state is low, or both. These non-acidic oxides of nonmetals may be amphoteric (like water, H 2 O [63]) or neutral (like nitrous oxide, N 2 O [64] [h]), but never basic.
Instead, due to hydrogen bonding, water is "stable, potable, odorless, benign, and... indispensable to life". [161] Less well-known of the oxides of hydrogen is the trioxide, H 2 O 3. Berthelot proposed the existence of this oxide in 1880 but his suggestion was soon forgotten as there was no way of testing it using the technology of the time. [162]
The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).
Although hydrogen bonding is a relatively weak attraction compared to the covalent bonds within the water molecule itself, it is responsible for several of the water's physical properties. These properties include its relatively high melting and boiling point temperatures: more energy is required to break the hydrogen bonds between water molecules.
The strength of a bond can be estimated by comparing the atomic radii of the atoms that form the bond to the length of bond itself. For example, the atomic radius of boron is estimated at 85 pm, [10] while the length of the B–B bond in B 2 Cl 4 is 175 pm. [11] Dividing the length of this bond by the sum of each boron atom's radius gives a ratio of