Search results
Results from the WOW.Com Content Network
The formula for evaluating the drift velocity of charge carriers in a material of constant cross-sectional area is given by: [1] =, where u is the drift velocity of electrons, j is the current density flowing through the material, n is the charge-carrier number density, and q is the charge on the charge-carrier.
Recall that by definition, mobility is dependent on the drift velocity. The main factor determining drift velocity (other than effective mass) is scattering time, i.e. how long the carrier is ballistically accelerated by the electric field until it scatters (collides) with something that changes its direction and/or energy. The most important ...
In other words, the electrical mobility of the particle is defined as the ratio of the drift velocity to the magnitude of the electric field: =. For example, the mobility of the sodium ion (Na + ) in water at 25 °C is 5.19 × 10 −8 m 2 /(V·s) . [ 1 ]
The drift velocity is the average velocity of the charge carriers in the drift current. The drift velocity, and resulting current, is characterized by the mobility; for details, see electron mobility (for solids) or electrical mobility (for a more general discussion). See drift–diffusion equation for the way that the drift current, diffusion ...
The further assumption therefore is that the electrons bump into obstacles (like defects or phonons) once in a while which limits their free flight. This establishes an average or drift velocity V d. The drift velocity is related to the average scattering time as becomes evident from the following relations.
The drift velocity then determines the electric current density and its relationship to E and is independent of the collisions. Drude calculated the average drift velocity from p = −eEτ where p is the average momentum, −e is the charge of the electron and τ is the average time between the collisions. Since both the momentum and the ...
The diamagnetic drift is not actually a guiding center drift. A pressure gradient does not cause any single particle to drift. Nevertheless, the fluid velocity is defined by counting the particles moving through a reference area, and a pressure gradient results in more particles in one direction than in the other.
In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, [1] principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.