Search results
Results from the WOW.Com Content Network
A conjecture of Erdős which has attracted considerable interest concerns the maximum length of a polynomial lemniscate ƒ(x, y) = 1 of degree 2n when p is monic, which Erdős conjectured was attained when p(z) = z n − 1. This is still not proved but Fryntov and Nazarov proved that p gives a local maximum. [1]
The inverse lemniscate sine also describes the arc length s relative to the x coordinate of the rectangular elastica. [36] This curve has y coordinate and arc length: y = ∫ x 1 t 2 d t 1 − t 4 , s = arcsl x = ∫ 0 x d t 1 − t 4 {\displaystyle y=\int _{x}^{1}{\frac {t^{2}\mathop {\mathrm {d} t} }{\sqrt {1-t^{4}}}},\quad s ...
Logarithms and exponentials with the same base cancel each other. This is true because logarithms and exponentials are inverse operations—much like the same way multiplication and division are inverse operations, and addition and subtraction are inverse operations.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
[1] [2] Once the ODE is found, it can be solved along the characteristic curves and transformed into a solution for the original PDE. For the sake of simplicity, we confine our attention to the case of a function of two independent variables x and y for the moment. Consider a quasilinear PDE of the form [3]
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
The initial conditions exist at point 1. Point 2 exists at the nozzle throat, where M = 1. Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for ...
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...